

Large Scale Metal Wire + Arc Additive Manufacturing of Structural Engineering Parts

Presented by Stewart Williams

Welding Engineering and Laser Processing Centre

www.waammat.com

www.cranfield.ac.uk

Topics

- Brief summary of Wire + Arc Additive Manufacture process in relation to other AM processes
- WAAM business drivers
- WAAM Systems
- Future plans

Cranfield

Wire + Arc Additive Manufacture (WAAM) Process

Benefits and limitations

Key WAAM process features

- Build rates 0.5 4 kg/hour typical 1kg/hr titanium
- Unlimited build volume
- Buy to fly ratio typical 1.5 but always <2
- Fully dense materials with excellent mechanical properties
- Minimum feature size 2 mm
- No commercial systems available yet

Aluminim stiffened frame

After machining

WAAM - Business Drivers

- WAAM business drivers are
 - Cost and material saving compared to current manufacturing methods
 - ✓ Greatly reduced lead times
 - ✓ Application to large engineering structures

Design option (MRR = 65 kg/h)	BTF	Cost (£k)	Cost red.
Machined from solid	69	4.9	-
WAAM + machining	8	2.4	>50%

WAAM business driver – cost saving case studies - Bombardier rib

Design option	Mass (kg)	BTF	Cost (£k)	Cost red.
Original machined	20	12	16.2	-
WAAM + machining	20	2.3	5	69%

Design option	Mass (kg)	BTF	Cost (£k)	Cost red.
Original, machined	36	12	1.6	-
WAAM + machining	36	2.3	0.7	55%

Cranfield

WAAM business driver – cost saving case studies

Design option	BTF	Cost (£k)	Cost red.
Machined from solid (MRR = 332 kg/h)	45	4.4	-
WAAM + machining	12.3	1.9	56%

15 kg aluminium wing rib (DR = 1kg/h)

What we've deposited so far

- Ti-6AI-4V
 - Grade 5
 - Grade 23
- Aluminium
 - **-** 2024
 - **-** 2319
 - **-** 4043
 - **-** 5087
- Refractories
 - Tungsten
 - Molybdenum
 - Tantalum

Steels

- ER60
- ER80
- ER90
- ER120
- Maraging grade 250
- Maraging grade 350
- Stainless (17-4 PH, 316L)
- Inconel
 - **-** 625
 - **-** 718
- Bronze
- Copper

Unique features - cold work

Rolled @ 50 kN <u>139 μm</u>

Rolled @ 75 kN <u>66 μm</u>

Ti64 // Static properties (average)

- Reduction in prior β grain size
- Reduction in α lamellae thickness
- Possibly some work-hardening effects still left in the structure

2319 // Effect of rolling + HT on porosity

As deposited

ST+AA

Rolled + ST + AA

There is no porosity in the rolled + heat treated sample.

The systems

Tent + part rotator option

Open architecture systems

Rolling Assisted WAAM

8

Wire Feeder and Spool

Torch Argon Shield

Local shielding and 2 D rolling

Parallel processing

- 2 x deposition
- Deposition + NDT + layer removal (machining)
- Deposition + metrology
- Deposition + cold work
- Combinations of the above

10 m maximum part size and/or multiple parts

WAAM system developments first long linear part

Where we are aiming - HELP!

Aluminium:

- 14 months for forging
- 4 months for machining
- 90% waste

Titanium:

• 10 times worse problems

This summer/autumn

World's largest metal AM parts:

• 6 m aluminium bulkhead

• 7 m steel cantilever beam (1500 kg)

WAAM system developments – multi robot systems for parallel processing

Future Developments

- Completion of software development including parallel processing
- Process control systems
- On-line NDT
- Development of multi robot and process systems
- Materials development
 - Higher strength aluminium > 500 MPa UTS
 - Refractory metal parts
 - Graded and mixed materials
 - MMCs
- Qualification for aerospace and oil & gas
- Commercial system development

Delivery - WAAMMat Programme

- WAAMMat programme aim is to reach TRL6 by 2019
- It is a rolling technology programme incorporating over 65 projects – total value approximately £3M (Industry, collaborative, PhDs/Masters, internal projects)
- Team of 26 at Cranfield to deliver the technology (academics, researchers, technicians and students)
- 14 academic partner institutions
- 19 industrial programme members (both end users + exploitation partners)

Much more information on our website waammat.com

OR CONTACT: Prof Stewart Williams s.williams@cranfield.ac.uk